One way to express the Riemann sum as a definite integral is
$$\int_a^bf(x)\,dx = \lim_{n\to\infty}\sum_{i=1}^{n} f(a+i\,\Delta x)\,\Delta x$$ where $$\Delta x =\frac{b-a}n$$
Taking $$J=\lim_{n\to\infty}\frac1n\sum_{i=1}^n\frac3{1+\left(\frac in\right)^2}$$ and making the substitution $g(u)=1/(1+u^2)$ with some rearrangement gives
$$J=3\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^ng\!\left(\frac in\right)$$
Take $\Delta x=1/n$, and at this point you can probably see that $a=0$ and $b=1$:
$$\begin{align}
J&=3\lim_{n\to\infty}\frac{1-0}{n}\sum_{i=1}^n g\!\left( 0+i\frac{1-0}{n}\right) \\
&=3\lim_{n\to\infty}\Delta x\sum_{i=1}^n g(a+i\,\Delta x)
\end{align}$$
and thusly you get $$J=3\int_0^1 \frac{dx}{1+x^2}$$
This graph clearly suggests that this is in fact a correct reformulation of $J$.