I am tasked to find the integral part of $\sqrt{2018+\sqrt{2018+\sqrt{...+2018}}}$, where the number of $2018$ is $2018$.
My attempt:
I came up with an upper bound, which was $\sqrt{2018+\sqrt{2018+\sqrt{2018+...}}}$, where there were infinite number of $2018$. I let this be $a$, and then I have $a^2=2018+a$, giving me $45.4249374...$. My problem here is that I have no idea what to set as a lower bound. Can anyone give me a hint to solve this? Alternatively, another approach could also be provided if it is more efficient.