How can I find the remainder when $\displaystyle\binom{2018}{1009}$ is divided by $ 2017^2?$
My Approach:
I have used Lucas' theorem Extension here,that is
$$\binom{n}{m} \equiv \frac{P}{Q}(\mod p^f)$$
$$\text{where},P=\prod_{i=0}^{s-f+1} \binom{n_i+n_{i+1}p+ \dots+n_{i+f-1}p^{f-1}}{m_i + m_{i+1}p+ \dots+ m_{i+f-1}p^{f-1}}$$
$$\& \space Q=\prod_{i=1}^{s-f+1} \binom{n_i+n_{i+1}p+ \dots+n_{i+f-2}p^{f-2}}{m_i + m_{i+1}p+ \dots+ m_{i+f-2}p^{f-2}}$$
so applying Lucas' theorem Extension in this problem:
$$\text{We can write : } \binom{2018}{1009}= \binom{1 \times 2017 \quad \quad 1 \times 2017^0}{0 \times 2017 \quad \quad 1009 \times 2017^0}$$
$$\implies s=1,f=2$$
$$\therefore P= \prod_{i=0}^{0} \binom{n_i+n_{i+1}p}{m_i + m_{i+1}p} \space \& \space Q= \prod_{i=1}^{0} \binom{n_i}{m_i }$$
$$\implies P= \binom{1 \times 2017 \quad \quad 1 \times 2017^0}{0 \times 2017 \quad \quad 1009 \times 2017^0} \space \& \space Q= 1$$
so again we are getting:
$$\binom{2018}{1009}=\frac{\binom{2018}{1009}}{1} \mod (2017^2)$$
Thus, ${\color{red}{\text{NO IMPROVEMENT}}}$
so how can i evaluate its remainder??
and if possible then how can we modify this process to get the answer? please help...