$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x\pars{1 + x^{2}}}\,\dd x &
\,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\,
{1 \over 2}\int_{0}^{\infty}{\ln\pars{1 + x} \over x\pars{1 + x}}\,\dd x
\,\,\,\stackrel{1 + x\ \mapsto\ x}{=}\,\,\,
{1 \over 2}\int_{1}^{\infty}{\ln\pars{x} \over \pars{x - 1}x}\,\dd x
\\[5mm] & \stackrel{x\ \mapsto\ 1/x}{=}\,\,\,
{1 \over 2}\int_{1}^{0}{\ln\pars{1/x} \over \pars{1/x - 1}/x}\,\pars{-\,{\dd x \over x^{2}}} =
-\,{1 \over 2}\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,\dd x
\\[5mm] & \stackrel{x\ \mapsto\ 1 - x}{=}\,\,\,
-\,{1 \over 2}\int_{0}^{1}{\ln\pars{1 - x} \over x}\,\dd x =
{1 \over 2}\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\,\dd x
\\[5mm] & =
{1 \over 2}\,\mrm{Li}_{2}\pars{1} = {1 \over 2}\,\zeta\pars{2} =
{1 \over 2}\,{\pi^{2} \over 6\phantom{^{2}}}
\\[5mm] & \implies
\bbx{\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x\pars{1 + x^{2}}}\,\dd x = {\pi^{2} \over 12}} \approx 0.8225
\end{align}
$\ds{-----------------------------------------}$
\begin{align}
\int_{0}^{1}{\ln\pars{1 + x^{2}} \over x\pars{1 + x^{2}}}\,\dd x &
\,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\,
{1 \over 2}\int_{0}^{1}{\ln\pars{1 + x} \over x\pars{1 + x}}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{-1}{\ln\pars{1 - x} \over x}\,\dd x -
{1 \over 2}\int_{0}^{1}{\ln\pars{1 + x} \over 1 + x}\,\dd x
\\[5mm] & =
\left.-\,{1 \over 2}\,\mrm{Li}_{2}'\pars{x}\right\vert_{\ 0}^{\ -1} -
\left.{1 \over 4}\,\ln^{2}\pars{1 + x}\right\vert_{\ 0}^{\ 1} =
-\,{1 \over 2}\,\ \overbrace{\mrm{Li}_{2}\pars{-1}}^{\ds{-\,{\pi^{2} \over 12}}} -
{1 \over 4}\,\ln^{2}\pars{2}
\\[5mm] & \implies
\bbx{\int_{0}^{1}{\ln\pars{1 + x^{2}} \over x\pars{1 + x^{2}}}\,\dd x =
{\pi^{2} \over 24} - {\ln^{2}\pars{2} \over 4}} \approx 0.2911
\end{align}
Note that
$\ds{\mrm{Li}\pars{-1} = \sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n^{2}} =
\sum_{n = 1}^{\infty}\bracks{{1 \over \pars{2n}^{2}} -
{1 \over \pars{2n - 1}^{2}}} =
\sum_{n = 1}^{\infty}\bracks{-\,{1 \over n^{2}} +
2\,{1 \over \pars{2n}^{2}}}}$
$\ds{= -\,{1 \over 2}\sum_{n = 1}^{\infty}{1 \over n^{2}} = \color{#f00}{-\,{\pi^{2} \over 12}}}$