Let $E$, $F$ be complex Hilbert spaces. The algebraic tensor product of $E$ and $F$ is given by $$E \otimes F:=\left\{\xi=\sum_{i=1}^dv_i\otimes w_i:\;d\in \mathbb{N},\;\;v_i\in E,\;\;w_i\in F \right\}.$$
In $E \otimes F$, we define $$ \langle \xi,\eta\rangle=\sum_{i=1}^n\sum_{j=1}^m \langle x_i,z_j\rangle_1\langle y_i ,t_j\rangle_2, $$ for $\xi=\displaystyle\sum_{i=1}^nx_i\otimes y_i\in E \otimes F$ and $\eta=\displaystyle\sum_{j=1}^mz_j\otimes w_j\in E \otimes F$.
The above sesquilinear form is an inner product in $E \otimes F$.
Why $(E \otimes F,\langle\cdot,\cdot\rangle)$ is not a complete space?
Thank you!!