1

I am wondering why does the typewriter sequence defined here on example 4 does not converge pointwise?

$f_n= \mathbb{1}_{\left [\frac{n-2^k}{2^k},\frac{n-2^k+1}{2^k}\right]}$ for $ k\geq0 $ and $2^k \leq n < 2^{k +1}$

abc
  • 71
  • 1
    I think this will help you https://math.stackexchange.com/questions/1412091/the-typewriter-sequence – Javi Jan 19 '18 at 15:02

1 Answers1

2

Hint

For $x \in [0,1]$ with binary representation $x_0 x_1 x_2 \dots$ what are the values of $$f_{\overline{x_0 x_1 \dots x_{k-1}0}}(x), \ f_{\overline{x_0 x_1 \dots x_{k-1}1}}(x)?$$