I am wondering why does the typewriter sequence defined here on example 4 does not converge pointwise?
$f_n= \mathbb{1}_{\left [\frac{n-2^k}{2^k},\frac{n-2^k+1}{2^k}\right]}$ for $ k\geq0 $ and $2^k \leq n < 2^{k +1}$
I am wondering why does the typewriter sequence defined here on example 4 does not converge pointwise?
$f_n= \mathbb{1}_{\left [\frac{n-2^k}{2^k},\frac{n-2^k+1}{2^k}\right]}$ for $ k\geq0 $ and $2^k \leq n < 2^{k +1}$
Hint
For $x \in [0,1]$ with binary representation $x_0 x_1 x_2 \dots$ what are the values of $$f_{\overline{x_0 x_1 \dots x_{k-1}0}}(x), \ f_{\overline{x_0 x_1 \dots x_{k-1}1}}(x)?$$