Note that for $x\to 1 \implies \log x\to 0$
$$\dfrac {m}{x^m -1} - \dfrac {p}{x^p-1}=\frac{1}{\log x}\left(\dfrac {m \log x}{e^{m\log x -1}} - \dfrac {p \log x}{e^{p\log x}-1}\right)\to \frac{p-m}2
$$
indeed by Taylor's series
$$\left(\frac{e^y-1}{y}\right)^{-1}=\left( 1+\frac{y}2+o(y)\right)^{-1}=1-\frac{y}2+o(y)$$
$$\frac{1}{\log x}\left(\dfrac {m \log x}{e^{m\log x -1}} - \dfrac {p \log x}{e^{p\log x}-1}\right)=\frac{1}{\log x}\left( 1-\frac{m \log x}2-1+\frac{p \log x}2 +o(\log x)\right)=\\=\frac{p-m}2+o(1)\to \frac{p-m}2$$