Calculate integral $\int \frac{x^2+1}{\sqrt{x^3+3}}dx$ This was my exam question. I've tried many online math solvers and math programs but none were able to solve. If anybody has an answer would be helpful. Thanks
-
6I'll bet a dollar that the $x^3+3$ was supposed to be $x^3+3x.$ – B. Goddard Jan 17 '18 at 11:36
-
Not sure if it is a typo: were you asked to find the antiderivative? If so, I would be surprised if an answer in closed form exists! – Szeto Jan 17 '18 at 11:37
-
yes it was antiderivative, if no answer i believe it's a typo – alynurly Jan 17 '18 at 11:39
-
I got $\frac{x\sqrt{x^2+3}-\ln {(|2x+2\sqrt{x^2+3}|)}}{2} + c$. – Landuros Jan 17 '18 at 11:40
-
2@Landuros In the question, it's $\sqrt{x^\color{red}3+3}$. – Jan 17 '18 at 11:50
-
2probably a typo, it leads to an elliptic function – Dr. Sonnhard Graubner Jan 17 '18 at 11:56
-
It must be a typo, because the result of http://www.wolframalpha.com/input/?i=integrate+(x%5E2+%2B+1)+%2F+sqrt(x%5E3+%2B+3) is for sure not a part of an exam. – user90369 Jan 17 '18 at 14:40
-
@ProfessorVector Whoopsies :). – Landuros Jan 18 '18 at 01:45
-
@Landuros But you are probably right, or it's B. Goddard. There is certainly a typo, but the OP has to check this with his teacher and tell us. – Jean-Claude Arbaut Jan 18 '18 at 16:52
-
Function $y=\frac{x^2+1}{\sqrt{x^3+3}}$ has a minimum at $x=0, y=1/\sqrt 3$. $x→∞ ⇒ y→∞ $ and $ if x→-∞ ⇒ y→-∞$. The solution is the integral of a series resulted from$(x^2+1)(binomial expansion of (x^3+3)^{-1/2}$. – sirous Jan 19 '18 at 15:28
2 Answers
$$I = \int\frac{x^2+1}{\sqrt{x^3+3}}dx=\underbrace{\int \frac{x^2}{\sqrt{x^3+3}}dx}_{I_1}+\underbrace{\int \frac{1}{\sqrt{x^3+3}}dx}_{I_2}$$
$$I_1 = \int \frac{x^2}{\sqrt{x^3+3}}dx$$
u-substitution $u=x^3$
$$\int \frac{1}{3\sqrt{u+3}}du =\frac{1}{3}\int \frac{1}{\sqrt{u+3}}du$$
u-substitution $v=u+3$
$$I_1 = \frac{1}{3} \int \frac{1}{\sqrt{v}}dv = \frac{1}{3}\int v^{-\frac{1}{2}}dv = \frac{1}{3}\frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C$$
Revert the substitutions $v=u+3,u=x^3$
$$I_1 = \frac{2}{3}\sqrt{x^3+3} + C$$
Now
\begin{align}
I_2 &= \int \frac{1}{\sqrt{x^3+3}}dx\\
&= \int \frac{1}{\sqrt{3\left(\frac{x^3}{3}+1\right)}}dx\\
&= \int \frac{1}{\sqrt{3\left(\left(\frac{x}{\sqrt[3]{3}}\right)^3+1\right)}}dx
\end{align}
Set $u = \frac{x}{\sqrt[3]{3}} \implies dx = \sqrt[3]{3}\, du$, then
\begin{align}
I_2&= \frac{\sqrt[3]{3}}{\sqrt{3}}\int \frac{1}{\sqrt{u^3+1}}du\\
\end{align}
See : $\int\frac{1}{\sqrt{x^3+1}}$
\begin{align}
I_2&= \frac{\sqrt[3]{3}}{\sqrt{3}}\left[\frac1{\sqrt[4]{3}}F\left(\arccos\left(\frac{2\sqrt{3}}{1+\sqrt{3}+u}-1\right)\mid\frac{2+\sqrt{3}}{4}\right)\right]+C\\
\end{align}
Revert the original substitution $u = \frac{x}{\sqrt[3]{3}} $:
\begin{align}
&= \frac{\sqrt[3]{3}}{\sqrt{3}\sqrt[4]{3}}F\left(\arccos\left(\frac{2\sqrt{3}}{1+\sqrt{3}+\frac{x}{\sqrt[3]{3}}}-1\right)\mid\frac{2+\sqrt{3}}{4}\right)+C\\
\end{align}
And
$$I = \frac{2}{3}\sqrt{x^3+3} + \frac{\sqrt[3]{3}}{\sqrt{3}\sqrt[4]{3}}F\left(\arccos\left(\frac{2\sqrt{3}}{1+\sqrt{3}+\frac{x}{\sqrt[3]{3}}}-1\right)\mid\frac{2+\sqrt{3}}{4}\right)+C$$

- 3,863
I have found a solution in terms of a hypergeometric function for positive $x$: $$ I = \frac{2}{3\sqrt{x}}\left(\sqrt{1+\frac{3}{x^3}}(1+x^2)-4\;_2F_1\left(-\frac{1}{2},\frac{1}{6},\frac{7}{6},-\frac{3}{x^3}\right)\right) +C $$ and verified the derivative equals the integrand (for positive $x$), and in fact for general $a$, $$ \int \frac{x^2+1}{\sqrt{x^3+a}}dx $$ is given by $$ I = \frac{2}{3\sqrt{x}}\left(\sqrt{1+\frac{a}{x^3}}(1+x^2)-4\;_2F_1\left(-\frac{1}{2},\frac{1}{6},\frac{7}{6},-\frac{a}{x^3}\right)\right) + C $$

- 4,321