Let $E$ be a complex Hilbert space, $\mathcal{L}(E)$ be the algebra of all bounded linear operators on $E$.
If $A\in\mathcal{L}(E)$, why $\displaystyle\lim_{n\to+\infty}\|A^n\|^{1/n}$ always exists?
Thank you.
Let $E$ be a complex Hilbert space, $\mathcal{L}(E)$ be the algebra of all bounded linear operators on $E$.
If $A\in\mathcal{L}(E)$, why $\displaystyle\lim_{n\to+\infty}\|A^n\|^{1/n}$ always exists?
Thank you.
Because of the norm inequality $\|AB\|\le\|A\|\|B\|$, the function $f(n)=\log\|A^n\|$ is subadditive (Subadditivity): $$f(m+n)=\log\|A^{m+n}\|=\log\|A^m\cdot A^n\|\le\log\|A^m\|+\log\|A^n\|=f(m)+f(n),$$ thus by Fekete's lemma, $\displaystyle\lim_{n\to\infty}\frac{f(n)}n$ exists and is equal to $\displaystyle\inf_{n\ge1}\frac{f(n)}n$.