Finding $\displaystyle \binom{n}{0}-\binom{n}{1}+\binom{n}{2}\cdots \cdots +(-1)^r\binom{n}{r}$
Try: using Identity $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$
So $$\sum^{r}_{k=1}(-1)^r\bigg(\binom{n-1}{k}+\binom{n-1}{k-1}\bigg)$$
Ciuld some help me how to find sum of that series, Thanks