The group $\mathrm{GL}_n(\mathbb{R})$ inherits a metric under the injection $$\mathrm{GL}_n(\mathbb{R}) \hookrightarrow \mathbb{R}^{n^2}$$.
Is there a natural/geometric way of viewing this metric on $\mathrm{GL}_n(\mathbb{R})$? What does is mean for two linear transformations to be close? What properties do two "close" linear transformations share?