i need some ideas to solve $$\sum_{n=1}^\infty n\cdot\left(\frac12\right)^n$$ I prove that the series converges to using ratio method, but i dont know how to find the sum.
-
Do you mean $\sum\limits_{k=1}^{+\infty}\frac{k}{2^k}$? – Michael Rozenberg Jan 15 '18 at 14:05
-
https://www.quora.com/How-do-you-evaluate-the-sum-of-n-2-n-from-n-1-to-infinity – user328442 Jan 15 '18 at 14:10
-
Hint: What do you get if you add $(1/2)^n$ to each term? – PM 2Ring Jan 15 '18 at 14:12
-
Let $x=\frac12$ in Find the sum of $\sum_{n=1}^{\infty}\frac{n}{x^n}$ – Jan 15 '18 at 16:02
6 Answers
$$S=\sum_{n=1}^\infty n\cdot\left(\frac12\right)^n$$ Then $$\begin{align}S&=\frac12+2\cdot\frac14+3\cdot\frac18+4\cdot\frac1{16}+\cdots\\ &=\left(\frac12+\frac14+\frac18+\cdots\right)+\left(\frac14+\frac18+\cdots\right)+\left(\frac18+\cdots\right)+\cdots\\ &=\left(\frac12+\frac14+\frac18+\cdots\right)\cdot\left(1+\frac12+\frac14+\cdots\right)\\ &=1\cdot 2\\ &=2\end{align}$$

- 14,545
Start with
$$\sum_{n=0}^\infty x^{n} = \frac{1}{1-x}.$$
Then take the derivative of both sides
$$\sum_{n=1}^\infty nx^{n-1} = \frac{1}{(1-x)^2}.$$
Multiply by $x$
$$\sum_{n=1}^\infty nx^{n} = \frac{x}{(1-x)^2}.$$
Then plug in $x=1/2.$
$$\sum_{n=1}^{\infty}\frac{n}{2^{n}}=\frac{1}{2}\sum_{n=1}^{\infty}\frac{n}{2^{n-1}}=\frac{1}{2}\left(1+x+x^2+...\right)'_{x=\frac{1}{2}}=\frac{1}{2}\left(\frac{1}{1-x}\right)'_{x=\frac{1}{2}}=$$ $$=\frac{1}{2}\cdot\frac{1}{\left(1-\frac{1}{2}\right)^2}=2$$

- 194,933
Are you familiar with the usual method for summing a finite geometric series?
Let $\displaystyle S_n = \sum_{k=1}^n k\cdot\left(\frac12\right)^k= \left(1 \cdot \dfrac 12 + 2 \cdot \dfrac {1}{2^2}+ 3 \cdot \dfrac {1}{2^3} + \cdots + n \cdot \dfrac {1}{2^n} \right)$
Then $\displaystyle \dfrac 12 S_n= \sum_{k=1}^n k\cdot\left(\frac12\right)^{k+1} = \left(1 \cdot \dfrac {1}{2^2} + 2 \cdot \dfrac {1}{2^3}+ 3 \cdot \dfrac {1}{2^4} + \cdots + (n-1) \cdot \dfrac {1}{2^n} + n \cdot \dfrac {1}{2^{n+1}} \right)$
So
$$S_n - \dfrac 12 S_n= \dfrac 12 + \dfrac {1}{2^2} + \dfrac {1}{2^3} + \cdots + \dfrac {1}{2^n} + n \cdot \dfrac {1}{2^{n+1}} $$
$$=\dfrac {1 - (\frac {1}{2})^{n+1}}{1 - \frac 12}-1 + n \cdot \dfrac {1}{2^{n+1}} $$
Thus
$$\dfrac 12 S_n= 2-\left( \dfrac{1}{2^n} \right)-1 - n \cdot \dfrac {1}{2^{n+1}}$$
$$S_n=4-\left( \dfrac{1}{2^{n-1}} \right)-2 - n \cdot \dfrac {1}{2^{n}}$$
So
$$\sum_{k=1}^\infty k\cdot\left(\frac12\right)^k = \displaystyle \lim_{n \to \infty} S_n =2$$

- 23,737
Other technique different than the showed in other answers make use of summation by parts together with particular algebraic rules usually named as finite calculus.
In this fashion we want to consider the indefinite sum $\sum k x^k\,\delta k$. Using the techniques described in the previously linked PDF we find that
$$\sum k x^k\,\delta k=\frac{x^k}{x-1}\cdot k-\frac1{x-1}\sum x^{k+1}\,\delta k\\\implies\sum_{k=0}^\infty kx^k=\left[\frac{x^k}{x-1}\cdot k\right]_{k=0}^{k\to\infty}-\frac1{x-1}\sum_{k=0}^\infty x^{k+1}$$
Choosing $x=1/2$ we find that
$$\sum_{k=0}^\infty k\left(\frac12\right)^k=\lim_{k\to\infty}\frac{(1/2)^k\cdot k}{-1/2}+2\sum_{k=1}^\infty (1/2)^k=0+2=2$$

- 30,417
use that for the finite sum is $$\sum_{i=1}^n\frac{i}{2^i}=-2\, \left( 1/2 \right) ^{n+1} \left( n+1 \right) -2\, \left( 1/2 \right) ^{n+1}+2 $$ compute the Limit for $n$ tends to infinity

- 95,283