Just as the title say, consider the integral: $$I=\int_0^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d} x=\frac{1}{2}\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d} x,$$ how to apply the residue theorem to get the answer?
2 Answers
Hint:
$$ \begin{align} \int_0^\infty\frac{\sin^2(x)}{x^2}\,\mathrm{d}x &=\frac12\int_{-\infty}^\infty\frac{\sin^2(x)}{x^2}\,\mathrm{d}x\\ &=-\frac18\int_{-i-\infty}^{-i+\infty}\frac{e^{2ix}+e^{-2ix}-2}{x^2}\,\mathrm{d}x\\ &=-\frac18\left(\int_{\gamma_+}\frac{e^{2ix}-1}{x^2}\,\mathrm{d}x +\int_{\gamma_-}\frac{e^{-2ix}-1}{x^2}\,\mathrm{d}x\right)\tag{1} \end{align} $$ where $\gamma_+$ goes from $-i-R$ to $-i+R$ then circles back counterclockwise on $-i+Re^{i\theta}$ for $\theta\in[0,\pi]$ as $R\to\infty$, and where $\gamma_-$ goes from $-i-R$ to $-i+R$ then circles back clockwise on $-i+Re^{-i\theta}$ for $\theta\in[0,\pi]$ as $R\to\infty$.
Each of the integrals in $(1)$ can easily be handled with the residue theorem.

- 345,667
$$\int_{0}^{\infty}\frac{(\sin x)^2}{x^2}dx=-\int_{0}^{\infty}(\sin x)^2{d\frac{1}{x}}=-\frac{(\sin x)^2}{x}\Bigg|^{\infty}_{0}+\int_{0}^{\infty}\frac{(2\sin x\cos x)}{x}dx=\int_{0}^{\infty}\frac{(\sin2x)}{2x}d2x=\ldots$$

- 25,582
- 7
- 59
- 91

- 530
- 2
- 11
-
Really? How does the first equality follow? In any event, you should give at least some verbal explanation... – tomasz Dec 17 '12 at 09:14
-
-
-
OK, I saw it in the older post:http://math.stackexchange.com/questions/5248/solving-the-integral-int-0-infty-frac-sinxx-dx-frac-pi2/8350#8350 – van abel Dec 17 '12 at 12:32
Given that, $\sin2x = 2\sin x\cos x=(\sin^2x)'$ and $\lim_{x\to 0}\frac{sin^2 x}{x^2} = 1$
– Guy Fsone Nov 27 '17 at 15:46