The integral, though not nice is do-able. Generally for a function y=f(x), the formula for the surface area, as suggested by Isaac, is:
$$\sigma=2\pi\int^b_a{f(x)\sqrt{1+[f'(x)]^2} dx}$$
(where $\sigma$ is surface area)
So You result in
$$\sigma=2\pi\int^2_1{\left(\frac{x^2}{4}-\frac{ln(x)}{2}\right)\sqrt{1+\left[\frac{x}{2}-\frac{1}{2x}\right]^2}dx}$$
You will find that this integral simplifies to:
$$\sigma=\frac{\pi}{4}\int^2_1{\left[x^2-2ln(x)\right]\left(\frac{x^2+1}{x}\right) dx}$$
which is:
$$\sigma=\frac{\pi}{4}\left[\left.\left(\frac{x^4}{4}+\frac{x^2}{2}\right)\right|^2_1-2\left.\left(\frac{x^2}{2}\left(ln(x)-\frac{1}{2}\right)+\frac{ln^2(x)}{2}\right)\right|^2_1\right]$$
$$\sigma=\frac{\pi}{4}\left[\left(\frac{21}{4}\right)-2\left(\frac{ln^2(2)}{2}+2ln(2)-\frac{3}{4}\right)\right]$$
$$\sigma=\left[\frac{21\pi}{16}-\frac{\pi}{2}\left(\frac{ln^2(2)}{2}+2ln(2)-\frac{3}{4}\right)\right]$$
$$\sigma=\left[\frac{21\pi}{16}-\frac{\pi ln^2(2)}{4}-\pi ln(2)+\frac{3\pi}{8}\right]$$
$$\sigma=\left[\frac{21\pi}{16}+\frac{3\pi}{8}-\frac{\pi ln^2(2)}{4}-\pi ln(2)\right]$$
$$\sigma=\left[\frac{27\pi}{16}-\frac{\pi ln^2(2)}{4}-\pi ln(2)\right]$$
$$\sigma=\left[\frac{27\pi}{16}-\pi ln(2) \left(ln(e\cdot\sqrt[4]{2}) \right) \right]$$
This is the most simplifies exact version obtainable which is approximately:
$$\sigma\hspace1ex\dot{=}\hspace1ex\left(5.30144-2.55493\right)$$
$$\sigma\hspace1ex\dot{=}\hspace1ex 2.74651$$
And so to conclude,
$\therefore$ the surface area of $\left[y=f(x)=\left(\frac{x^2}{4}\right)-\left(\frac{ln(x)}{2}\right)\right]$ revolved 360 degrees about the x-axis from $\left.\right|^2_{x=1}$ is about $2.74651units^2$