Let $z=cos(\theta) + i sin(\theta)$. Then the value of $\sum_{m=1}^{15}Im(z^{2m-1})$ at $\theta=2^°$ is $$(a) \,\frac{1}{sin2^°} \\(b) \,\frac{1}{3sin2^°} \\(c) \,\frac{1}{2sin2^°} \\(d) \,\frac{1}{4sin2^°} $$
My attempt: I solved the problem and got the answer as follows: Value of the expression = $$ sin(\theta) + sin(3\theta)+ ... + sin(27\theta)+ sin(29\theta)$$ $$= 2sin(15\theta)[cos(14\theta) + cos(12\theta) + ...+cos(2\theta)] + sin(15\theta)$$ $$ = 2cos(7\theta)[cos(7\theta)+cos(5\theta)+cos(3\theta) + cos(\theta)]$$ $$= 8cos(7\theta)cos(4\theta)cos(2\theta)cos(\theta) $$ $$=\frac{1}{2sin(\theta)}(sin(15\theta) + sin(\theta))$$ $$=\frac{1}{4sin(\theta)} + 0.5$$ $$=\frac{1}{4sin(2^°)} + 0.5$$
Please confirm if my method is correct. How do I get to the current answer?