$$ \tan^{-1}\big(\tfrac{1}{x}\big)=\cot^{-1}x, \quad x>0 $$
I understand the simple proof $$ y=\cot^{-1}x\implies \cot y=x\implies\tfrac{1}{x}=\tan y\\ \tan^{-1}\big(\tfrac{1}{x}\big)=\tan^{-1}\big(\tan y\big)=y=\cot^{-1}x $$ From the domains of $\tan^{-1}$ and $\cot^{-1}$, $$ \tfrac{1}{x}\in\mathbb{R} \quad\&\quad x\in\mathbb{R}\\\implies {x}\in\mathbb{R}-\{0\} \quad\&\quad x\in\mathbb{R}\implies x\in\mathbb{R}-\{0\} $$ I can understand $x\neq{0}$, but how come the condition $x>0$ ?
My understanding
For $\sin^{-1}$,
$$ \sin^{-1}\big(\tfrac{1}{x}\big)=\csc^{-1}x,\quad x\leq{-1}\text{ or }x\geq{1} $$
$$ -1\leq\tfrac{1}{x}\leq1 \quad\&\quad x\leq-1\text{ or }x\geq1\\-1\leq\tfrac{1}{x}\leq1 \implies -1\leq\tfrac{1}{x}<0\text{ or }0\leq \tfrac{1}{x}\leq1\implies x\leq{-1}\text{ or }x\geq 1\\ x\leq{-1}\text{ or }x\geq 1\quad\&\quad x\leq{-1}\text{ or }x\geq 1\implies x\leq{-1}\text{ or }x\geq 1 $$ from the domains of the functions $\sin^{-1}$ and $\csc^{-1}$.
Note: I am only considering the pricipal value branch.ie., $$ \tan^{-1}:\mathbb{R}\to\Big(-\pi/2,\pi/2\Big)\\ \cot^{-1}:\mathbb{R}\to\Big(-\pi,\pi\Big) $$