Giving some math indications to my brother whom is in high school, I ran into the following:
Sketch $f(x)=\log_2(|x-1|+1)$ and using the graphic solve the following inequality:
$\sqrt{x}+ f(x) \geq 1$.
Now, the graphic is the following (thanks to Desmos):
The problem to me is that at my brother level there is no knowledge of calculus, derivatives and so on, but only elementary (algebraic) properties of some functions,
so how can one solve such a problem using the graphic without calculus?
I mean for $x\geq 1$ it is evident, for $x< 0$ it is undefined, but for $0\leq x<1$ ?