We have $$n^2=2d^2+2d-1\implies d^2+(d-1)^2=n^2$$
which can translate to a Pythagorean triple
$\qquad A^2+B^2=C^2=n^2\quad\text{where }\quad B=A\pm1$
The $(m,k)$ values for to generate these triples are adjacent Pell numbers which can be generated by a simple derivation of Euclid's formula $ \quad A=m^2-k^2,\quad B=2mk,\quad C=m^2+k^2\quad$ where each m-value generated is the k-value for the next iteration of the formula
\begin{equation}\quad m=k+\sqrt{2k^2+(-1)^k}\end{equation}
Only $19$ can be generated with $15$-digit precision but it is simple and quick in a spreadsheet. It looks like the answer you seek, where $d>10^{12}$ is number $16$ in the list below.
\begin{equation}
0)\quad F(m,k)=(d,(d\pm1),n)\\
1)\quad F(2,1)=(3,4,5)\\
2)\quad F(5,2)=(21,20,29)\\
3)\quad F(12,5)=(119,120,169)\\
4)\quad F(29,12)=(697,696,985)\\
5)\quad F(70,29)=(4059,4060,5741)\\
6)\quad F(169,70)=(23661,23660,33461)\\
7)\quad F(408,169)=(137903,137904,195025)\\
8)\quad F(985,408)=(803761,803760,1136689)\\
9)\quad F(2378,985)=(4684659,4684660,6625109)\\
10)\quad F(5741,2378)=(27304197,27304196,38613965)\\
11)\quad F(13860,5741)=(159140519,159140520,225058681)\\
12)\quad F(33461,13860)=(927538921,927538920,1311738121)\\
13)\quad F(80782,33461)=(5406093003,5406093004,7645370045)\\
14)\quad F(195025,80782)=(31509019101,31509019100,44560482149)\\
15)\quad F(470832,195025)=(183648021599,183648021600,259717522849)\\
16)\quad F(1136689,470832)=(1070379110497,1070379110496,1513744654945)\\
17)\quad F(2744210,1136689)=(6238626641379,6238626641380,8822750406821)\\
18)\quad F(6625109,2744210)=(36361380737781,36361380737780,51422757785981)\\
19)\quad F(15994428,6625109)=(211929657785303,211929657785304,299713796309065)\\
\end{equation}