Although, the answer is already published, I would like to leave a comment here. There is a nice “umbral calculus” method, which is, of course, the same, but is pretty intuitively clear.
Consider the Taylor formulas:
$$
f(\partial/\partial x) e^{Ax}=f(A)e^{Ax}, ~~e^{A\partial/\partial x}f(x)=f(x+A);
$$
the identity
$$f(\partial/\partial x)g(x)|_{x=0}=\sum_{n=0}^\infty \frac{f^{(n)}(0)g^{(n)}(0)}{n!}=g(\partial/\partial x)f(x)|_{x=0} ;$$
and the equality $\frac{1}{x}=\int_0^{\infty} e^{-xt}dt$.
Then:
\begin{align*}
\sum_{n=1}^\infty \frac{x^n}{(n+a)^n}&=\sum_{n=1}^\infty \frac{(-1)^{n-1}x^n (\partial/\partial y)^{n-1}}{(n-1)!}~ \frac{1}{n+a+y}\Big|_{y=0}=\\
~\\
&=\sum_{n=1}^\infty \frac{(-1)^{n-1}x^n (\partial/\partial y)^{n-1}e^{(n-1+a)\partial/\partial y}}{(n-1)!}~ \frac{1}{1+y}\Big|_{y=0}=\\
~\\
&=x\exp\left(a\frac{\partial}{\partial y}-x\frac{\partial}{\partial y}e^{\partial/\partial y}\right)~\frac{1}{1+y}\Big|_{y=0}=\\
~\\
&=\frac{1}{1+\frac{\partial}{\partial y}}~x\exp\left(ay-xye^{y}\right)\Big|_{y=0}=\\
~\\
&=\int_{0}^{\infty} e^{-t-t\partial/\partial y}dt ~~~ x\exp(ay-xye^y)\Big|_{y=0}=\\
~\\
&=x\int_{0}^\infty e^{-t}\exp(a(y-t)-x(y-t)e^{y-t})dt\Big|_{y=0}=\\
~\\
&=x\int_{0}^\infty e^{-t(1+a)+xte^{-t}}dt=\\
~\\
\tag*{qed}&=x\int_{0}^{1} t^{a-xt}dt
\end{align*}