Find the value of $x$ such that $$\dfrac{(x+\alpha)^n-(x+\beta)^n}{\alpha-\beta} = \dfrac{\sin n\theta}{\sin ^n \theta}$$ when $\alpha$ and $\beta$ are the roots of $t^2 − 2t + 2 = 0$.
Here is my attempt:
Find the value of $x$ such that $$\dfrac{(x+\alpha)^n-(x+\beta)^n}{\alpha-\beta} = \dfrac{\sin n\theta}{\sin ^n \theta}$$ when $\alpha$ and $\beta$ are the roots of $t^2 − 2t + 2 = 0$.
Here is my attempt:
Hint:
WLOG let $\alpha=1+i,\beta+1-i\implies\alpha+\beta=?,\alpha-\beta=?$
Using How to prove Euler's formula: $e^{i\varphi}=\cos(\varphi) +i*\sin(\varphi)$?, $$e^{ix}-e^{-ix}=2i\sin x$$
$$\implies\dfrac{\sin(n\theta)}{\sin^n\theta}=\dfrac1{2i}\cdot\left(\left(\dfrac{e^{i\theta}}{\sin\theta}\right)^n-\left(\dfrac{e^{-i\theta}}{\sin\theta}\right)^n\right)$$
Can you take it from here?
WLOG let $\alpha=1+i,\beta+1-i\implies\alpha+\beta=?,\alpha-\beta=?$
Let $2\cot t=x+\alpha+x+\beta=2(x+1)$
$$(x+\alpha)^n-(x+\beta)^n=\dfrac{2i\sin nt}{\sin^nt}=\dfrac{(\alpha-\beta)\sin nt}{\sin^nt}$$
using de Moivre's theorem