1) For me it is clear that a countable union of $F_\sigma$ sets is $F_\sigma$, but how to prove that countable INTERSECTION of $F_{\sigma}$ sets is $F_{\sigma}$ set ?
2) Prove that countable intersection of $G_{\delta}$ sets is $G_{\delta}$ set.
I tried to show (2):
$$l \in \mathbb{N}, A_{l}\textit{ is } G_{\delta}, A_{l}=\bigcap\limits_{n \in \mathbb{N}}V_{n}^{l}$$
$$\bigcap\limits_{l \in \mathbb{N}}A_{l}= \bigcap\limits_{l \in \mathbb{N}} \bigcap\limits_{n \in \mathbb{N}}V_{n}^{l} = \bigcap\limits_{i \in \mathbb{N}}W_{i}$$ $$ x \in \bigcap\limits_{i \in \mathbb{N}}W_{i}\Leftrightarrow \forall i\in \mathbb{N} \ x \in V_{n}^{l}\Leftrightarrow x \in \bigcap\limits_{n \in \mathbb{N}}\bigcap\limits_{l \in \mathbb{N}}V_{n}^{l}
$$