Let $X$ and $Y$ be i.i.d binomial random variables with parameters $n$ and $\dfrac{1}{2}$ and let Z be another binomial random variable with parameter $2n$ and $\dfrac{1}{2}$. Then $P(X=Y)$ equals?
(a) $P(Z=0)$
(b) $P(Z=n)$
(c) $P(Z=2n-1)$
(d) $P(Z=n+1)$
I did this : $P(X=Y)$ --> $P(X-Y=0)$ then i thought $X$ and $Y$ follows same distribution subtracting them would give zero that is $X-Y$ $\sim$ $B(0,\dfrac{1}{2})$
But that doesnt seem to help me. Any ideas?