We are in $\mathbb R^d$. Let $\frac{1}{p}+\frac{1}{q}=1$ and $q=\frac{2d}{d-2}$, $d\geq 3$. I suppose $f\in L^q(\mathbb R^d)$, $\nabla f\in L^2(\mathbb R^d)$ and $g\in L^p(\mathbb R^d)\cap L^2(\mathbb R^d)$. I denote $$\left<f,g\right>=\int_{\mathbb R^d}fg,$$ and $G$ is the radial solution of $\Delta u=0$, i.e. $G(x,y)=K|x-y|^{d-2}$ where $K$ is a constant. So, I proved that $$|\left<f,g\right>|^2\leq \|\nabla f\|_{L^2(\mathbb R^d)}^2\left<g,G*g\right>.$$
Moreover, I know that $$\|f\|_{L^q(\mathbb R^d)}=\sup\{|\left<f,g\right>|\mid \|g\|_{L^p(\mathbb R^d)}\leq 1\},$$ and thus
$$\|f\|_{L^q(\mathbb R^d)}^2=\sup\{|\left<f,g\right>|^2\mid \|g\|_{L^p(\mathbb R^d)}\leq 1\}\leq \|\nabla f\|_{L^2(\mathbb R^d)}^2\sup\{\left<g,G*g\right>\mid \|g\|_{L^p}\leq 1\}.$$
Now, my book (Analysis second edition by Elliott Lieb and Michael Loss page 203) says : By taking $g=f^{q-1}\in L^p(\mathbb R^d)$ we finally obtain $$\|f\|_{L^q(\mathbb R^d)}^{2q}\leq \|\nabla f\|_{L^2(\mathbb R^d)}^2\left<f^{q-1},G*f^{q-1}\right>,$$ but I really don't know how to get it.
Any idea ?