I'm trying to prove: $$\int_0^\infty \frac{\sin x}{x}dx = \frac{\pi}{2}$$
I have defined $\; I(a)= \int_0^\infty\frac{\sin x}{x}e^{-ax}dx\;$ for $a>0$, and I'm trying to show that: $$\frac{dI}{da}(a)=-\int_0^\infty \sin(x) e^{-ax}dx$$
I started like this: $$\frac{dI}{da}(a)= \lim_{h \to 0} \frac{I(a+h)-I(a)}{h}=\lim_{h \to 0} \int_0^\infty \frac{\sin x}{x}\biggl(\frac{e^{-(a+h)x}-e^{-ax}}{h}\biggr)dx$$
Next I would like to put the limit inside the integral, and then I get what I want, but how can I justify this? Thanks