The symmetric traditional matrix $A$ and its determinant is given.
$$ A = \begin{bmatrix} a_1&b_1&0&0&0&0& \cdots &0\\ b_1&a_2&b_2&0&0&0&\cdots&0\\ 0&b_2&a_3&b_3&0&0&\cdots&0\\ 0&0&b_3&a_4&b_4&0&\cdots&0\\ 0&0&0&b_4&a_5&b_5&\cdots&0\\ 0&0&0&\ddots&\ddots&\ddots&\ddots&\vdots\\ 0&0&0&0&0&b_{n-2}&a_{n-1}&b_{n-1}\\ 0&0&0&0&0&0&b_{n-1}&a_n\\ \end{bmatrix} $$
What is the determinant of matrix $B$ which exactly $A$ after removing first row and column?
$$ B = \begin{bmatrix} a_2&b_2&0&0&0&\cdots&0\\ b_2&a_3&b_3&0&0&\cdots&0\\ 0&b_3&a_4&b_4&0&\cdots&0\\ 0&0&b_4&a_5&b_5&\cdots&0\\ 0&0&\ddots&\ddots&\ddots&\ddots&\vdots\\ 0&0&0&0&b_{n-2}&a_{n-1}&b_{n-1}\\ 0&0&0&0&0&b_{n-1}&a_n\\ \end{bmatrix} $$
Is there any known way to calculate this from $A$?