0

I have a Galois theory exercise to prove that $$[\mathbb{Q}(\sqrt2,\sqrt3,\sqrt5):\mathbb Q]=8$$ I understand the proof up until the bit where If I prove $$\sqrt5 \notin \mathbb{Q}(\sqrt2,\sqrt3)$$ then $$[\mathbb{Q}(\sqrt2,\sqrt3,\sqrt5):\mathbb Q(\sqrt2,\sqrt3)]=2$$ How does proving that $\sqrt5\notin \mathbb{Q}(\sqrt2,\sqrt3)$ imply that $[\mathbb{Q}(\sqrt2,\sqrt3,\sqrt5):\mathbb Q(\sqrt2,\sqrt3)]=2$??

J.Menton
  • 157

1 Answers1

3

You showed that $\sqrt5 \notin \mathbb{Q}(\sqrt2,\sqrt3)$, which means that the minimum polynomial $f$ of $\sqrt5$ over $\mathbb{Q}(\sqrt2,\sqrt3)$ has $\deg(f)>1$. But $f(x)=x^2-5$ is the polynomial over $\mathbb{Q}(\sqrt2,\sqrt3)$ with minimal degree such that $f(\sqrt5)=0$. So $[\mathbb{Q}(\sqrt2,\sqrt3,\sqrt5):\mathbb Q(\sqrt2,\sqrt3)]=\deg(f)=2$

Dan
  • 382