Im not sure where the mistake is.
You're not being careful with how (properties of) limits work.
$$\lim_{x\to0}({\tan x \over x}\times{1\over x^2}-{\sin x \over x}\times{1\over x^2}) \\
\lim_{x\to0}({1 \over x^2}-{1 \over x^2})=0$$
You're skipping a few (dangerous) steps here, starting with:
$$\lim_{x\to0}\left({\tan x \over x}{1\over x^2}-{\sin x \over x}{1\over x^2}\right) \color{red}{=} \lim_{x\to0}\left({\tan x \over x}{1\over x^2}\right)-\lim_{x\to0}\left({\sin x \over x}{1\over x^2}\right)$$
This is only allowed if the two limits in the right-hand side exist, and they don't.
Suppose you do arrive at those two limits, then you still can't do:
$$\lim_{x\to0}\left({\tan x \over x}{1\over x^2}\right)-\lim_{x\to0}\left({\sin x \over x}{1\over x^2}\right) \color{red}{=} \left(\lim_{x\to0}\color{blue}{{\tan x \over x}}\right){1\over x^2}-\left(\lim_{x\to0}\color{blue}{{\sin x \over x}}\right){1\over x^2} $$
and only take the limit of the blue functions, leaving the fractions ${1\over x^2}$ to cancel them at the end.