5

Let ${\rm Li}_2$ denote the dilogarithm function. Evaluate the integral

$$\mathcal{J} = \int_{0}^{1} \frac{\log^2(1-x) {\rm Li}_2(-x)}{x} \, {\rm d}x $$

A related question is this one here. However, there is a problem because

$$\frac{\mathrm{d} }{\mathrm{d} x} {\rm Li}_2(-x) \neq - \frac{\log(1-x)}{x}$$

On the other hand we could expand the $\log^2(1-x)$ in a Taylor series and express that ${\rm Li}_2$ in an integral form and then deal with a harmonic sum , however I am not comfortable with handling double integration.

Any help?

Tolaso
  • 6,656
  • I suspect another related question is this one here. –  Jan 04 '18 at 07:54
  • @ProfessorVector: they are pretty different. This question is about alternating Euler sums with weight $5$, the other question is about a standard Euler sum with weight $12$. – Jack D'Aurizio Jan 04 '18 at 20:01
  • This is the result: $-4 \text{Li}_5\left(\frac{1}{2}\right)-4 \text{Li}_4\left(\frac{1}{2}\right) \log (2)+\frac{\pi ^2 \zeta (3)}{8}+\frac{15 \zeta (5)}{16}-\frac{7}{4} \zeta (3) \log ^2(2)-\frac{1}{15} 2 \log ^5(2)+\frac{1}{9} \pi ^2 \log ^3(2)$ – Infiniticism Jun 17 '20 at 10:30

1 Answers1

5

We have $$ \int_{0}^{1}\log^2(1-x) x^{n-1}\,dx =\frac{d^2}{da^2}\left.\int_{0}^{1}(1-x)^a x^{n-1}\,dx\right|_{a=0}=\frac{H_n^2-H_n^{(2)}}{n}$$ by differentiating Euler's Beta function. Since $\text{Li}_2(-x)=\sum_{n\geq 1}\frac{(-1)^n x^n}{n^2}$, the evaluation of $\mathcal{J}$ boils down to the evaluation of two alternating Euler sums with odd weight: $$\mathcal{J}=\sum_{n\geq 1}(-1)^n\frac{H_n^2-H_n^{(2)}}{n^3}. \tag{A}$$ Now $\sum_{n\geq 1}\frac{H_n^2-H_n^{(2)}}{n^3}=S_{11,3}-S_{2,3} =8\,\zeta(5)-4\,\zeta(2)\,\zeta(3)$ follows from standard results on cubic Euler sums with weight $5$ (Flajolet and Salvy), and by summation by parts the evaluation of $\sum_{n\geq 1}\frac{H_{2n}}{n^3}$ boils down to the evaluation of $\sum_{n\geq 1}\frac{H_n^{(3)}}{n^2} = \frac{11}{2}\,\zeta(5)-2\,\zeta(2)\,\zeta(3)$ and $$ \mathcal{K}_1 = \sum_{n\geq 1}\frac{H_n^{(3)}}{(2n-1)^2}=-\int_{0}^{1}\frac{\text{Li}_3(x^2)\log(x)}{x^2(1-x^2)}\,dx.\tag{B}$$ If we manage to compute $\mathcal{K}_1$ and $$ \mathcal{K}_2 = \sum_{n\geq 1}\frac{H_{2n}^2}{n^3},\tag{C} $$ or just $\int_{0}^{1}\frac{\log^2(1-x)\text{Li}_2(x^{\color{red}{2}})}{x}\,dx$, we are done.

This kind of Euler sums have been studied by Xu, Yang and Zhang. Page $13$ of this recent article proves that $\mathcal{J}$ is a polynomial in $\zeta(2),\zeta(3),\zeta(5),\log(2),\text{Li}_4\left(\frac{1}{2}\right)$ and $\text{Li}_5\left(\frac{1}{2}\right)$.

Jack D'Aurizio
  • 353,855