When familiarizing myself with big-$O$ and similar notations, I found this cheat sheet (which I took the liberty of transcribing):
$$\begin{array}{c|c} \text{big-$O$ notation} & \text{limit definition} \\[2ex] \hline f\in o(g) & \displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}=0 \\[2ex] f\in O(g) & \displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}\lt\infty \\[2ex] f\in \Theta(g) & \displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}\in\Bbb{R}_{\ge0} \\[2ex] f\in\Omega(g) & \displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}\lt\infty \\[2ex] f\in\omega(g) & \displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty \\[2ex] \end{array}$$
I am not at all familiar with notations like this for asymptotic behavior, so my questions are pretty straight-forward and simple:
- Is any of the quoted material inaccurate? If so, what?
- Are there any ‘caveats’ with asymptotic notation of which students should be wary? Perhaps something that might easily be misunderstood on the superficial level?