I need to prove the total expectation theorem using the Lebesgue integration only. I have seen the proof in some forums and some probability books, but they use the usual integration encountered in the calculus based probability books. I want to prove it using the Lebesgue integration. This is the proof that I need to express using the Lebesgue integral
$E[E[X|Y]]$ = $\int ^\infty _{-\infty} E[X|Y=y] \times f_{Y} (y) dy $
$\quad$ $\quad \quad \quad \ $= $\int^\infty _{-\infty} \int^\infty _{-\infty} xf_{X|Y=y}(x) dx f_{Y} (y) dy$
$\quad$ $\quad \quad \quad \ $= $\int^\infty _{-\infty} \int^\infty _{-\infty} x f_{XY}(x,y) dx dy$
$\quad$ $\quad \quad \quad \ $= $\int^\infty _{-\infty} x \int^\infty _{-\infty} f_{XY} (x,y) dy dx$
$\quad$ $\quad \quad \quad \ $= $\int^\infty _{-\infty} xf_{X}(x) dx$
$\quad$ $\quad \quad \quad \ $= $E[X]$