To simplify notation, I'll make a slightly different substitution of $\theta = \frac12\cos^{-1}\left(\frac{a}{b}\right)$. Then compute:
\begin{align}
\tan\left(\frac\pi4 + \theta \right) + \tan\left(\frac\pi4 - \theta \right) &= \frac{\sin\left(\frac\pi4 + \theta\right)}{\cos\left(\frac\pi4 + \theta\right)} + \frac{\sin\left(\frac\pi4 - \theta\right)}{\cos\left(\frac\pi4 - \theta\right)}\\
&= \frac{\sin \frac\pi4\cos\theta + \sin \theta\cos\frac\pi4}{\cos\frac\pi4\cos\theta-\sin\frac\pi4\sin\theta} + \frac{\sin \frac\pi4\cos\theta - \sin \theta\cos\frac\pi4}{\cos\frac\pi4\cos\theta+\sin\frac\pi4\sin\theta}\tag{$*$}\\
&= \frac{\frac{\sqrt2}{2}\cos \theta + \frac{\sqrt2}{2}\sin \theta}{\frac{\sqrt2}{2}\cos \theta - \frac{\sqrt2}{2}\sin\theta} + \frac{\frac{\sqrt2}{2}\cos\theta - \frac{\sqrt2}{2}\sin\theta}{\frac{\sqrt2}{2}\cos\theta + \frac{\sqrt2}{2}\sin\theta}\\
&= \frac{\cos\theta + \sin \theta}{\cos\theta - \sin\theta} + \frac{\cos\theta- \sin\theta}{\cos\theta + \sin \theta}\\
&= \frac{\cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta + \cos^2\theta - 2\cos\theta\sin\theta + \sin^2\theta}{\cos^2\theta - \sin^2\theta}\\
&= \frac{2}{\cos2\theta}\\
&= \frac{2}{\cos\left(\cos^{-1}\left(\frac ab\right) \right)}\\
&= \frac{2b}{a}.
\end{align}
In $(*)$, I've used the angle sum and difference formulas
\begin{align}
\sin\left(A \pm B\right) &= \sin A\cos B \pm \sin B \cos A,\\
\cos\left(A \pm B\right) &= \cos A \cos B \mp \sin A \sin B.
\end{align}