The following question is taken from Royden's Real Analysis $4$th edition, Chapter $4,$ exercise $10,$ page $79.$
Question: Let $f$ be a bounded measurable function on a set of finite measure $E.$ For a measurable subset $A$ of $E,$ show that $\int_A f =\int_E f \cdot \chi_A.$
My attempt:
Since $f\cdot \chi_A$ is bounded measurable on a set of finite measure $E,$ therefore it is integrable. Recall that $$\int_A f=\inf\left\{ \int_A \psi: \psi \text{ is simple and }\psi\geq f \text{ on }A \right\}$$ and $$\int_E f\cdot\chi_A = \inf\left\{ \int_E \phi: \phi\text{ is simple and }\phi\geq f\cdot\chi_A \text{ on }E \right\}.$$ For any given simple function $\psi$ such that $\psi\geq f$ on $A,$ we can extend it so that $\psi=0$ on $E\setminus A$ and this extension is still a simple function. Therefore, for any $x\in E,$ $$(f\cdot\chi_A)(x) = \begin{cases} f(x) & \text{ if }x\in A \\ 0 & \text{ if }x\in E\setminus A \end{cases} \leq \begin{cases} \psi(x) & \text{ if }x\in A \\ 0 & \text{ if }x\in E\setminus A \end{cases} = \psi(x).$$ Hence, $\int_A f \geq \int_E f\cdot\chi_A$. Similarly, let $\phi$ be a simple function such that $\phi\geq f\cdot\chi_A$ on $E.$ Then for any $x\in A,$ $$f(x) = (f\cdot\chi_A)(x)\leq \phi(x).$$ Therefore, $\int_A f \leq \int_E f\cdot\chi_A$ and hence $\int_A f = \int_E f\cdot\chi_A.$
Is my proof correct?