let x be arandom variable and let
$A_n$ ={${ \omega : n \leq |x(w)|<n+1 }$} n=0,1,2,...
prove that
$\sum_{n=1}^{\infty}p(|x|> n)$=$\sum_{n=1}^{\infty}np(A_n)$ $\leq$ E(|x|)
$\leq$ $\sum_{n=1}^{\infty}(n+1)p(A_n)$=1+$\sum_{n=1}^{\infty}p(|x|>n)$
deduce
1) E(x) is finite iff $\sum_{n=1}^{\infty}p(|x|> n)$ is convergent
2)if E(x) is finite then np(|x|> n) $\to$ 0 as n $\to$ $\infty$
I try to solve it , I begin with
let $A_n =({n \leq |x|<n+1} ) = ({|x|<n+1})-({|x|<n})$
then
$p(A_n)=p({|x|<n+1})-p({|x|<n})$
what i I can do now , any help please its important problem for me !