Note that since $f$ is continuous on $(0,1]$, then the convergent improper Riemann integral $\int_0^1 f(x)\,dx$ can be written
$$\int_0^1 f(x)\,dx=\lim_{n\to \infty}\int_{1/n}^1 f(x)\,dx$$
For every $n$ we can subdivide (partition) the interval $[1/n,1]$ such that
$$\int_{1/n}^1 f(x)\,dx=\sum_{k=1}^{n-1} \int_{k/n}^{(k+1)/n}f(x)\,dx$$
And now we find that using the first mean value theorem for integrals
$$\begin{align}
\lim_{n\to \infty}\int_{1/n}^1 f(x)\,dx&=\lim_{n\to \infty}\sum_{k=1}^{n-1} \int_{k/n}^{(k+1)/n}f(x)\,dx\\\\
&=\lim_{n\to \infty}\frac1n \sum_{k=1}^{n-1} f(\xi_k(n))\tag1
\end{align}$$
where $\xi_k (n)\in [k/n,(k+1)/n]$ depends on $k$ and $n$. Since, the improper integral converges, the limit on the right-hand side of $(1)$ also converges.
Thus, there always exists a Riemann sum that converges to the value of the convergent improper integral. However, it is not always true that the left-sided Riemann sum converges (See Daniel Fischer's solution here for a counter example).
If $f$ is monotonic on $[1/n,1]$, however, we can apply the squeeze theorem to show that we may take any value of $x_k\in [k/n,(k+1)/n]$ and arrive at the desired result
$$\int_0^1 f(x)\,dx=\lim_{n\to \infty}\frac1n \sum_{k=1}^{n-1} f(k/n)$$
EXAMPLE: $f(x)=\frac1{\sqrt x}$
As an example, let $f(x)=x^{-1/2}$, which is clearly monotonically decreasing. Then, we have
$$\begin{align}
\frac1n\sum_{k=1}^{n-1} \sqrt{\frac{n}{k}}&=\frac{1}{\sqrt{n}}\sum_{k=1}^{n-1} \frac1{\sqrt{k}}=\frac{1}{\sqrt{n}}\sum_{k=0}^{n-2} \frac1{\sqrt{k+1}}
\end{align}$$
We note that $\frac1{\sqrt k}\ge \frac{2}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt k\right)$ and $\frac1{\sqrt{k+1}}\le \frac{2}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt k\right)$. Summing the telescoping terms yields
$$\frac{2(\sqrt{n}-1)}{\sqrt n}<\frac1n\sum_{k=1}^{n-1} \sqrt{\frac{n}{k}}<\frac{2\sqrt{n-1}}{\sqrt n}$$
Letting $n\to \infty$ and applying the squeeze theorem reveals
$$\int_0^1 \frac1{\sqrt x}\,dx=\lim_{n\to\infty}\frac1n\sum_{k=1}^{n-1} \sqrt{\frac{n}{k}}=2$$
as expected!