I want to prove per contradiction, that there doesn't exist a strictly monotone function $f:\mathbb{R} \to \mathbb{R}$ with $$ f(\mathbb{R}) = \mathbb{R} \backslash \mathbb{Q} $$ but I'm not sure if this argumentation is right.
Assume there exists such a function $f$. Let be $ a \in \mathbb{R} \backslash \mathbb{Q}$ and $(\frac{a}{n})_{n \in \mathbb{N}} \in (\mathbb{R} \backslash \mathbb{Q})^\mathbb{N}$. Then there exist $b_n \in \mathbb{R}: f(b_n) = \frac{a}{n}$. $$ \lim_{n \to \infty} f(b_n) = \lim_{n\to \infty} \frac{a}{n} = 0 \notin \mathbb{R} \backslash \mathbb{Q} $$ But because of the monotony of $f$, for a $b \in \mathbb{R}$ $$ \lim_{x \to b} f(x)$$ has to exists and so it has to be in $\mathbb{R}\backslash \mathbb{Q}$.
Is there some example for non-strictly monotone functions? (it has to be $\mathrm{im}(f) = \mathbb{R}\backslash\mathbb{Q})$