Your Integral may be expressed as a Meijer G-Function of two Variables,
which is discussed by Agarwal in 1964 for the first time. A more general form is the H-Fox-Function of two Variables
which can be found in the standard publication of Mathai: https://www.researchgate.net/publication/266566090_The_H-function_Theory_and_Applications.
The first of the two indefinite integrals:
$$F_{1}\left( \epsilon \right) =\int_{0}^{\infty }\frac{q^{3}\left( 1+q\right)
\exp \left( -2q\right) }{q^{4}+\epsilon ^{4}}dq$$
can be solved analytically in terms of two Meijer G-functions:
$$F_{1}\left( \sigma \right) \frac{1}{16\sqrt{2}\pi ^{\frac{3}{2}}\sigma ^{3}}%
\left[ G_{1,5}^{5,1}\left( 16\,\sigma ^{4}\left\vert
\begin{array}{c}
-,-,\frac{3}{4},-,- \\
\frac{3}{4},1,\frac{5}{4},\frac{3}{2},\frac{7}{4}%
\end{array}%
\right. \right) +\frac{1}{4\,\sigma }G_{1,5}^{5,1}\left( 16\,\sigma
^{4}\left\vert
\begin{array}{c}
-,-,1,-,- \\
1,1,\frac{5}{4},\frac{3}{2},\frac{7}{4}%
\end{array}%
\right. \right) \right] $$
where we use $\sigma =\frac{\epsilon }{4}$ to have the same notation later
on for the second indefinite integral:
$$F_{2}\left( \epsilon \right) =\int_{0}^{\infty }\frac{1}{q^{2}\left(
q^{4}+\epsilon ^{4}\right) }G_{1,3}^{2,1}\left( \frac{q^{2}}{4}\left\vert
\begin{array}{c}
-,\frac{1}{2},- \\
\frac{9}{2},\frac{5}{2},\frac{3}{2}%
\end{array}%
\right. \right) \exp \left( -q\right) dq$$
The first and the last function can be found in
The wolfram functions side.
They can be expressed in terms of their Meijer G-identities
and then $F_{2}$ can be evaluated using the
integration theorem for Meijer G-functions (http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/04/)
$$\int_{0}^{\infty }t^{\alpha -1}G_{p,q}^{m,n}\left( \left\vert
\begin{array}{c}
a_{1},...,a_{p} \\
b_{1},...,b_{q}%
\end{array}%
\right. \right) \times $$
$$G_{p_{1},q_{1}}^{m_{1},n_{1}}\left( x\,t\left\vert
\begin{array}{c}
a_{11},...,a_{1p_{1}} \\
b_{11},...,b_{1q_{1}}%
\end{array}%
\right. \right) \times G_{p_{2},q_{2}}^{m_{2},n_{2}}\left( y\,t\left\vert
\begin{array}{c}
a_{21},...,a_{2p_{2}} \\
b_{21},...,b_{2q_{2}}%
\end{array}%
\right. \right) dt$$
$$z^{-\alpha
}G_{p,q,p_{1},q_{1},p_{2},q_{2},}^{m,n,m_{1},n_{1},m_{2},n_{2}}\left(
\begin{array}{c}
1-\alpha -b_{1},...,1-\alpha -b_{q} \\
1-\alpha -a_{1},...,1-\alpha -a_{p}%
\end{array}%
\left\vert
\begin{array}{c}
a_{11},...,a_{1p_{1}} \\
b_{11},...,b_{1q_{1}}%
\end{array}%
\right. \left\vert
\begin{array}{c}
a_{21},...,a_{2p_{2}} \\
b_{21},...,b_{2q_{2}}%
\end{array}%
\right. \left\vert \frac{x}{z},\frac{y}{z}%
\begin{array}{c}
\\
\end{array}%
\right. \,\right) $$
The Meijer G-identities corresponding to the functions are:
$$\exp \left( -q\right) =G_{0,1}^{1,0}\left( q\left\vert
\begin{array}{c}
-,- \\
0,-%
\end{array}%
\right. \right) $$
$$\frac{1}{q^{2}\left( q^{4}+\epsilon ^{4}\right) }=\frac{1}{\epsilon ^{6}}%
G_{1,1}^{1,1}\left( \left( \frac{q}{\epsilon }\right) ^{4}\left\vert
\begin{array}{c}
-\frac{1}{2},- \\
-\frac{1}{2},-%
\end{array}%
\right. \right) $$
After some algebraic manipulations and variable transformations, using
(http://functions.wolfram.com/HypergeometricFunctions/MeijerG/17/02/03/) we
conclude:
$$F_{2}\left( \sigma \right) =\frac{1}{32\sqrt{2}\pi ^{\frac{5}{2}}\sigma ^{6}}\int_{0}^{\infty }t^{\frac{1%
}{4}}G_{1,1}^{1,1}\left( \frac{t}{\sigma ^{4}}\left\vert
\begin{array}{c}
-\frac{1}{2},- \\
-\frac{1}{2},-%
\end{array}%
\right. \right) \times G_{2,6}^{4,2}\left( t\left\vert
\begin{array}{c}
-,-,\frac{1}{4},\frac{3}{4},-,- \\
\frac{9}{4},\frac{11}{4},\frac{5}{4},\frac{7}{4},\frac{3}{4},\frac{5}{4}%
\end{array}%
\right. \right) $$
$$\times G_{0,4}^{4,0}\left( t\left\vert
\begin{array}{c}
-,-,-,- \\
0,\frac{1}{2},\frac{1}{4},\frac{3}{4}%
\end{array}%
\right. \right) dt =$$
$$= \frac{1}{32\sqrt{2}\pi ^{\frac{5}{2}}\sigma ^{5}}%
~G_{1,1,2,6,0,4}^{1,1,4,2,4,0}\left(
\begin{array}{c}
\frac{5}{4},- \\
\frac{5}{4},-%
\end{array}%
\left\vert
\begin{array}{c}
-,-,\frac{1}{4},\frac{3}{4},-,- \\
\frac{9}{4},\frac{11}{4},\frac{5}{4},\frac{7}{4},\frac{3}{4},\frac{5}{4}%
\end{array}%
\right. \left\vert
\begin{array}{c}
-,-,-,- \\
0,\frac{1}{2},\frac{1}{4},\frac{3}{4}%
\end{array}%
\right. \left\vert \sigma ^{4},\sigma ^{4}%
\begin{array}{c}
\\
\end{array}%
\right. \,\right) $$
A similar example can be found here: https://www.researchgate.net/publication/269504875_Capacity_of_k_-_m_Shadowed_Fading_Channels.
You may find also the source code for implementing the function in Mathematica in the publication above. Due to the lack of time, I can not check,
if the solution of your Integral reduces to functions of only one Variable, since $\frac{x}{z}=\frac{y}{z}=\sigma ^{4}$. You may do this numerical,
also I can provide the H-Fox-Function of one variable.
can be reduced to a linear combination of four modified Besselfunctions of the first kind
– tired Jan 03 '18 at 00:35