Neat question. If one were to allow for answers in $\mathbb{Z}$, you can have as many as 18 solutions.
$$\begin{align}
&(65,72,-97) &&(90,56,-106) &&&(140,48, -148) \\
&(240,44,-244) &&(440, 42, -442) &&&(840, 41, -841) \\
&(45,200,-205) &&(50,120,-130) &&&(60,80,-100)
\end{align}$$
$$\begin{align}
&***(8,15,17)*** &&(24,-10, 26) &&&(32,-60,68) \\
&(36,-160,164) &&(38,-360,362) &&&(39,-760,761) \\
&(-120,35,125) &&(-40,30,50) &&&(0,20,20)
\end{align}$$
Solution:
$$\begin{cases} a^2+b^2=c^2 &&&&&&(1)\\a+b+c=40 &&&&&&(2)\end{cases}$$
$$(2) \ \text{for c into} \ (1)\to $$
$$\begin{align}
a^2+b^2&=[40-(a+b)]^2 &&\implies \\
a^2+b^2&=1600-80(a+b)+(a+b)^2 &&\implies \\
0&=1600-80(a+b)+2ab &&\implies \\
0&=ab-40(a+b)+800 &&\implies \\
800 &= ab - 40(a+b) + 1600 &&\implies \\
800 = d_1 \cdot d_2&= (a-40)(b-40)&&\implies \\
&\Bigg{\Downarrow} \\
\end{align}$$
$$\begin{cases} a=40+d_1 \\ b=40+d_2 \\ c =-40-(d_1+d_2)\end{cases} $$
The sides of the triangle are now defined parametrically in terms of an arbitrary choice of divisors of $800$. Here, for any choice of a divisor-pair $(d_1,d_2)$, switching the order doesn't produce a new solution, (other times it can), but there is an additional $(-d_1,-d_2)$ solution.
Since,
$$\begin{align}
800=2^{\color{red}{5}} \cdot 5^{\color{red}{2}} &\implies
(\color{red}{5}+1)(\color{red}{2}+1)=18 \ \text{divisors} \\
&\implies 9 \ \text{divisor-pairs} \\
&\implies 18 \ \text{divisor-pairs including negatives}
\end{align}$$
we expect $18$ solutions overall, evaluated above.