Using McLaurin expansion for the respective functions I get
$$\sin{x}=x-\frac{x^3}{6}+O(x^5), \\\arctan{x}=x-\frac{x^3}{3}+O(x^5) \\ \cos{t}=1-\frac{t^2}{2}+O(t^4)$$
The expansion for $\cos{t}$ gives
$$x(\cos{2x}-1)= x(1-2x^2+O(16x^4)-1)=-2x^3+xO(16x^4).$$
Combining everything gives the limit
$$\lim_{x\rightarrow 0} \frac{x-\frac{x^3}{6}+O(x^5)-x+\frac{x^3}{3}-O(x^5)}{-2x^3+xO(16x^4)}=\lim_{x\rightarrow 0}\frac{\frac{x^3}{2}+O(x^5)}{x^3(-2+O(16x^4))}=\lim_{x\rightarrow0}\frac{\frac{1}{2}+O(x^5)}{-2+O(16x^4)} \\ =\frac{1}{2}\cdot\frac{1}{-2}=-\frac{1}{4}.$$
Correct answer is $-\frac{1}{12}$.
Questions:
1) Where is my error?
2) Is it correct to multiply an ordo term with $x$ as I've done?
3) How do I know how many terms is enough to expand to when I want to compute a limit?