0

Let $X,Y\in L^1(\Omega,\mathfrak{F}, P)$, where $\mathfrak{F}$ is a $\sigma$-algebra and $P$ is the probability measure on $\Omega$. If $E[X|Y]=Y$ a.s. $E[Y|X]=X$ a.s., then prove that $X=Y$ a.s..

Now I can prove it is true for $X,Y$ are simple function, but I stuck at how to pass it to general measurable functions.

1 Answers1

2

Hints:

  1. Show that $$\mathbb{E}[(X-Y) 1_{\{X>q\} \cap \{Y \leq q\}}] =0$$ for any $q \in \mathbb{R}$.
  2. Prove that $$\{X>Y\} = \bigcup_{q \in \mathbb{Q}} \{Y \leq q\} \cap \{X>q\}$$
  3. Combine Step 1 and 2 to conclude that $\mathbb{P}(X>Y)=0$.
  4. Interchange the roles of $X$ and $Y$ to get $\mathbb{P}(Y>X)=0$. Thus $$\mathbb{P}(X \neq Y) = \mathbb{P}(X>Y)+\mathbb{P}(Y>X)=0.$$
saz
  • 120,083