If $A = \begin{bmatrix}2&1\\-4&-2\end{bmatrix}$, then $I+2A+3A^2+4A^3+\dots$ is equal to
(a) $\begin{bmatrix}4&1\\-4&0\end{bmatrix}$
(b) $\begin{bmatrix}3&1\\-4&-1\end{bmatrix}$
(c) $\begin{bmatrix}5&2\\-8&-3\end{bmatrix}$
(d) $\begin{bmatrix}5&2\\-3&-8\end{bmatrix}$
How does one solve such equations formed by matrices?