Prove that: $$\left(\dfrac {-1+\sqrt {-3}}{2}\right)^n + \left(\dfrac {-1-\sqrt {-3}}{2}\right)^n=\begin{cases} 2, & \textrm { if } n \textrm { is a multiple of 3},\\ -1, & \textrm { if } n \textrm { is any other integer} \end{cases}$$
My Attempt: $$\dfrac {-1+\sqrt {-3}}{2}=\dfrac {-1+i\sqrt {3}}{2}$$ which is a complex cube root of unity. Let $\omega = \dfrac {-1+i\sqrt {3}}{2}$. Similarly, $\omega^2=\dfrac {-1-i\sqrt {3}}{2}$