2

Prove that: $$\left(\dfrac {-1+\sqrt {-3}}{2}\right)^n + \left(\dfrac {-1-\sqrt {-3}}{2}\right)^n=\begin{cases} 2, & \textrm { if } n \textrm { is a multiple of 3},\\ -1, & \textrm { if } n \textrm { is any other integer} \end{cases}$$

My Attempt: $$\dfrac {-1+\sqrt {-3}}{2}=\dfrac {-1+i\sqrt {3}}{2}$$ which is a complex cube root of unity. Let $\omega = \dfrac {-1+i\sqrt {3}}{2}$. Similarly, $\omega^2=\dfrac {-1-i\sqrt {3}}{2}$

Chris Brooks
  • 7,424
pi-π
  • 7,416

4 Answers4

2

You have an answer from @uswer8734617's comment. I would do it slightly differently.

Note that $\overline{z^n}=\overline{z}^n$ for any complex number $z$. So $$ \omega^n+\overline{\omega}^n=\omega^n+\overline{\omega^n}=2Re(\omega^n) $$ Now all you need to do is calculating $\omega^n$.

But you have already done $n=1$, $n=2$. Calculate one more, you would fine the pattern: $\omega^3=\omega\cdot\omega^2=1$.

1

Alternative solution: the two complex numbers $\frac{-1\pm\sqrt{3}i}{2}$ are the roots of $x^2+x+1=0.$ Consider a recursive formula

$$a_{n+2}+a_{n+1}+a_n=0,$$

with $a_0=2$ and $a_1=-1$ agreeing with $\left(\frac{-1+\sqrt{3}i}{2}\right)^n+\left(\frac{-1-\sqrt{3}i}{2}\right)^n$ at $n=0$ and $1$. Then from the characteristic root method, $a_n=\left(\frac{-1+\sqrt{3}i}{2}\right)^n+\left(\frac{-1-\sqrt{3}i}{2}\right)^n$. We can then prove the periodic-$3$ pattern using mathematical induction.

Zhuoran He
  • 3,039
  • Zhuoran He, could you please elaborate more? How it can be done using Induction? – pi-π Dec 27 '17 at 01:15
  • @blue_eyed_..., if $a_0=2$, $a_1=-1$, then $a_2=-(a_0+a_1)=-1$, and $a_3=-(a_1+a_2)=2$, $a_4=-(a_2+a_3)=-1$, the pattern repeats. – Zhuoran He Dec 27 '17 at 02:22
0

$\{1,\omega,\omega^2\}$, as a group with respect to $\cdot$, is isomorphic to $\left(\mathbb{Z}/(3\mathbb{Z}),+\right)$.
It follows that for any $n\in\mathbb{Z}$ the power sum $$ 1^n +\omega^n +\omega^{2n} $$ equals $3$ if $n\equiv 0\pmod{3}$ and zero otherwise, i.e. $$ \frac{1^n+\omega^n+\omega^{2n}}{3} = \mathbb{1}_{\equiv 0\pmod{3}}(n)$$ which is the driving principle of the discrete Fourier transform / multisection technique for computing objects like $$\sum_{\substack{0\leq k\leq n\\ k\equiv 1\!\!\pmod{\!\!3}}}\!\!\!\!\binom{n}{k}\,2^k,$$ for instance.

Jack D'Aurizio
  • 353,855
0

Using How to prove Euler's formula: $e^{i\varphi}=\cos(\varphi) +i*\sin(\varphi)$?,

$$-\dfrac12+\dfrac{\sqrt3i}2=\cos120^\circ+i\sin120^\circ=e^{i120^\circ}$$

$$\left(-\dfrac12+\dfrac{\sqrt3i}2\right)^n=\cos(120^\circ n)+i\sin(120^\circ n)$$

Similarly,

$$-\dfrac12-\dfrac{\sqrt3i}2=\cos(-120^\circ)+i(-\sin120^\circ)=e^{-i120^\circ}$$

$$\left(-\dfrac12-\dfrac{\sqrt3i}2\right)^n=\cos(-120^\circ n)+i\sin(-120^\circ n)=\cos(120^\circ n)-i\sin(120^\circ n)$$

$$\left(-\dfrac12+\dfrac{\sqrt3i}2\right)^n+\left(-\dfrac12-\dfrac{\sqrt3i}2\right)^n=2\cos(120^\circ n)$$

Now $n$ can be written as one of $3m,3m+1,3m+2$ where $m$ is any integer.