For, $\int_0^{\infty} \frac{\arctan(x)-\arctan(2x)}x \mathrm dx$
Let, $I_1=\int_0^{\infty} \frac{arctan(x)}x\mathrm dx$ and $I_2=\int_0^{\infty} \frac{\arctan(2x)}x\mathrm dx$
For, $I_1$ let $x=\frac 1u $ so $I_1=\int_{\infty}^{0} \frac{\arctan(\frac1u)}{\frac1u}\left(-\frac1{u^2}\right)\mathrm du$ $=\int_0^{\infty} \frac{arccot(u)}{u}du$
From which it follows, $I_1=\int_0^{\infty} \frac{\frac\pi2-\arctan(x)}x\mathrm dx$ So, $2I_1=\int_0^{\infty} \frac{\frac \pi2}x\mathrm dx$
In the same way it can be shown that, $2I_2=\int_0^{\infty} \frac{\frac\pi2}x\mathrm dx$
So, $2I=2I_1-2I_2=0$
So, where is my error?