I have to find the limit : (let $k\in \mathbb{R}$)
$$\lim_{n\to \infty}n^k \left(\Big(1+\frac{1}{n+1}\Big)^{n+1}-\Big(1+\frac{1}{n}\Big)^n \right)=?$$
My Try :
$$\lim_{n\to \infty}\frac{n^k}{\Big(1+\frac{1}{n}\Big)^n} \left(\frac{\Big(1+\frac{1}{n+1}\Big)^{n+1}}{\Big(1+\frac{1}{n}\Big)^n}-1\right)$$
we know that :
$$\frac{\Big(1+\frac{1}{n+1}\Big)^{n+1}}{\Big(1+\frac{1}{n}\Big)^n}>1$$
now what do i do ?