No, there are no such four polynomials.
We use two lemmas (the proof is written at the end of the answer) :
Lemma 1 : If $P(x)+Q(x)\gt 0, P(x)+R(x)\gt 0$ for all $x\in\mathbb R$, and $Q(x)+R(x)$ has no real roots, and there exists a real number $\alpha$ such that $P(\alpha)+Q(\alpha)+R(\alpha)=0$, then $Q(x)+R(x)\lt 0$ for all $x\in\mathbb R$.
Lemma 2 : If $P(x)+Q(x)\lt 0, P(x)+R(x)\lt 0$ for all $x\in\mathbb R$, and $Q(x)+R(x)$ has no real roots, and there exists a real number $\alpha$ such that $P(\alpha)+Q(\alpha)+R(\alpha)=0$, then $Q(x)+R(x)\gt 0$ for all $x\in\mathbb R$.
Suppose that four polynomials $P_1(x),P_2(x),P_3(x),P_4(x)$ satisfy our condition.
We may suppose that
$$P_1(x)+P_2(x)\gt 0,\qquad P_1(x)+P_3(x)\gt 0$$
(At least two of $P_1(x)+P_2(x),P_1(x)+P_3(x),P_1(x)+P_4(x)$ have the same sign. We may suppose that $P_1(x)+P_2(x)$ and $P_1(x)+P_3(x)$ have the same sign. If both are negative, then we can name $-P_1(x),-P_2(x),-P_3(x),-P_4(x)$ as $P_1(x),P_2(x),P_3(x),P_4(x)$ respectively so that we have $P_1(x)+P_2(x)\gt 0$ and $P_1(x)+P_3(x)\gt 0$.)
From the lemma, we have
$$P_2(x)+P_3(x)\lt 0$$
Suppose here that $P_1(x)+P_4(x)\gt 0$.
Then, since $P_1(x)+P_2(x)\gt 0$ and $P_1(x)+P_4(x)\gt 0$, it follows from the lemma that $P_2(x)+P_4(x)\lt 0$. Since $P_2(x)+P_3(x)\lt 0$ and $P_2(x)+P_4(x)\lt 0$, it follows from the lemma that $P_3(x)+P_4(x)\gt 0$. Since $P_1(x)+P_3(x)\gt 0$ and $P_3(x)+P_4(x)\gt 0$, it follows from the lemma that $P_1(x)+P_4(x)\lt 0$, which contradicts $P_1(x)+P_4(x)\gt 0$.
So, we have $P_1(x)+P_4(x)\lt 0$.
If $P_2(x)+P_4(x)\lt 0$, then since we have $P_2(x)+P_3(x)\lt 0$, it follows from the lemma that $P_3(x)+P_4(x)\gt 0$.
Now, we have two cases to consider :
Case 1 :
$$P_1(x)+P_2(x)\gt 0,\quad P_1(x)+P_3(x)\gt 0,\quad P_2(x)+P_3(x)\lt 0$$
$$P_1(x)+P_4(x)\lt 0,\quad P_2(x)+P_4(x)\lt 0,\quad P_3(x)+P_4(x)\gt 0$$
In this case, we have
$$P_1(x)\gt -P_2(x)\gt P_3(x)\gt -P_4(x)\gt P_1(x)$$
which is impossible.
Case 2 :
$$P_1(x)+P_2(x)\gt 0,\quad P_1(x)+P_3(x)\gt 0,\quad P_2(x)+P_3(x)\lt 0$$
$$P_1(x)+P_4(x)\lt 0,\quad P_2(x)+P_4(x)\gt 0$$
In this case, we have
$$P_2(x)\lt -P_3(x)\lt P_1(x)\lt -P_4(x)\lt P_2(x)$$
which is impossible.
Finally, let us prove the lemmas.
Lemma 1 : If $P(x)+Q(x)\gt 0, P(x)+R(x)\gt 0$ for all $x\in\mathbb R$, and $Q(x)+R(x)$ has no real roots, and there exists a real number $\alpha$ such that $P(\alpha)+Q(\alpha)+R(\alpha)=0$, then $Q(x)+R(x)\lt 0$ for all $x\in\mathbb R$.
Proof for lemma 1 :
Since
$$Q(\alpha)=-(P(\alpha)+R(\alpha))\lt 0,\qquad R(\alpha)=-(P(\alpha)+Q(\alpha))\lt 0$$
we have $Q(\alpha)+R(\alpha)\lt 0$.
Suppose here that there exists a real number $\beta$ such that $Q(\beta)+R(\beta)\gt 0$.
Then, by the intermediate value theorem, $Q(x)+R(x)$ has at least one real root, which contradicts that $Q(x)+R(x)$ has no real roots.
It follows from this that $Q(x)+R(x)\lt 0$ for all $x\in\mathbb R$.$\qquad\blacksquare$
Lemma 2 can be proven in the similar way as above.