Possible Duplicate:
Is $\mathbf{Q}(\sqrt{2}, \sqrt{3}) = \mathbf{Q}(\sqrt{2}+\sqrt{3})$?
On Page 379, Algebra, Artin(1991)
Let $\mathbb{Q}[\alpha,\beta]$ denote the smallest subring of $\mathbb{C}$ containing $\mathbb{Q}$, $\alpha$=$\sqrt{2}$, $\beta$=$\sqrt{3}$, and let $\gamma=\alpha+\beta$. Probe that $\mathbb{Q}[\alpha,\beta]=\mathbb{Q}[\gamma]$.
To be precise, how to show $\alpha, \beta \in \mathbb{Q}[\gamma]$?It seems to me two subrings have different dimensions, how can they equal?