Assume for the moment the truth of the following statement $$x\int_{0}^{1} \dfrac{1}{t^{tx}}dt = \sum_{n \geq 1} \left(\dfrac{x}{n}\right)^n. \label{e:1} \tag{*}$$
Since $\lim_{x \to \infty} x^{1/x} = 1$ the answer is $$\displaystyle \lim_{x \to \infty} \left(\int_{0}^{1} \left(f(t)\right)^x dt\right)^{1/x} $$
where $f(t) = \dfrac{1}{t^{t}}$, assuming the limit exists.
Since $f(t)$ is continuous on $[0,1]$ (defining $0^0 = 1$) and using the well known result, that for a positive continuous function $g$ on $[0,1]$ we have $$\lim_{x \to \infty}\left(\int_{0}^{1} \left(g(t)\right)^x\right)^{1/x} = \sup_{t \in [0,1]} g(t) \label{e:2}\tag{+}$$ it follows that required limit is $ \sup_{t \in [0,1]} f(t)$. It is easy to see that the maximum of $f(t)$ occurs at $1/e$ so the answer is $f(1/e)=e^{1/e}$.
For a proof of $\eqref{e:1}$ we start with the identity
$$
\int_{0}^{\infty} \exp( -\lambda u) u^{\alpha - 1}du = \dfrac{\Gamma(\alpha)}{\lambda^\alpha}.
$$
Put $\lambda = \dfrac{n}{x}, \alpha = n$ to get
$$
\int_{0}^{\infty} \dfrac{1}{\Gamma(n)}\exp(-n\dfrac{u}{x}) u^{n-1}du = \left(\dfrac{x}{n}\right)^n
$$
So $$
\begin{align}
\sum_{n \ge 1}\left( \dfrac{x}{n} \right)^n &= \int_{0}^{\infty}\exp(-\dfrac{u}{x}) \sum_{n \geq 1} \dfrac{\left(u \exp(-\dfrac{u}{x})\right)^{n-1}}{\Gamma(n)} du\\ &= \int_{0}^{\infty} \exp\left(-\dfrac{u}{x} + u\exp(-\dfrac{u}{x})\right)du.
\end{align}
$$
Substituting $u = -x \log t$ in the above integral we have $$\sum_{n \ge 1}\left( \dfrac{x}{n} \right)^n = \int_{0}^{1} \exp(\log t -x t\log t) x \dfrac{dt}{t} = x\int_{0}^{1} \dfrac{1}{t^{tx}}dt. $$
A proof for $\eqref{e:2}$.
Let $M = \sup_{x \in [0,1]} g(x) > 0.$ Clearly $\left(\int_{0}^{1} (g(t))^{x}\right)^{1/x} \leq (M^x)^{1/x} = M.$ There is a $x_0 \in [0,1]$ such that $M = g(x_0)$, and for any $ \epsilon > 0$ we have a $\delta > 0 $ such that $|x - x_0| \leq \delta$ and $0 \leq x \leq 1$ implies $ g(x) \geq M - \epsilon$ and
$$
\left(\int_{0}^{1} (g(t))^{x}\right)^{1/x} \geq \left(\int_{|x - x_0| < \delta} (g(t))^{x}\right)^{1/x} \geq (M-\epsilon) \ell^{1/x}
$$
where $\ell$ is the length of the interval where $0 \leq x \leq 1$ and $ |x - x_0| \leq \delta.$ Since $\ell^{1/x} \to 1$ as $x \to \infty$ the result follows.