Hint:
From the addition formula,
$$\tan(\arctan a+\arctan b+\arctan c)=\frac{\dfrac{a+b}{1-ab}+c}{1-\dfrac{a+b}{1-ab}c}
=\dfrac{a+b+c-abc}{1-ab-bc-ca}$$
and
$$\tan(\arctan a+\arctan b+\arctan c+\arctan d)
\\=\frac{{\dfrac{a+b+c-abc}{1-ab-bc-ca}}+d}{1-\dfrac{a+b+c-abc}{1-ab-bc-ca}d}
\\=\dfrac{a+b+c+d-abc-bcd-cda-dab}{1-ab-bc-cd-da-ac-bd-ca+abcd}.$$
A regular pattern seems to emerge. We can write a recurrent form
$$\tan\left(\arctan\frac{p_{n-1}}{q_{n-1}}+\arctan a_n\right)=\frac{\dfrac{p_{n-1}}{q_{n-1}}+a_n}{1-\dfrac{p_{n-1}}{q_{n-1}}a_n}=\frac{p_{n-1}+q_{n-1}a_n}{q_{n-1}-p_{n-1}a_n}$$
and
$$\begin{cases}p_n=p_{n-1}+q_{n-1}a_n,\\q_n=q_{n-1}-p_{n-1}a_n.\end{cases}$$
From an operational point of view, this is equivalent to Nosrati's formula, where the product will be computed incrementally. The fully expanded formulas are complicated and computationally inefficient.