My goal is to compute $$I=\int_{0}^{+∞}\frac{\cos{ax}}{1+x^2}dx$$ where $a>0$.
$$I=\frac{1}{2}\int_{-∞}^{+∞}\frac{\cos{ax}}{1+x^2}dx=\frac{1}{2}Re\bigg(\int_{-∞}^{+∞}\frac{e^{iax}}{1+x^2}dx\bigg)$$.
Let $f(z)=\frac{e^{iaz}}{1+z^2}$.
By Residue Theorem, $\int_{-R}^{R}\frac{e^{iax}}{1+x^2}dx+\int_{\gamma_R}\frac{e^{iaz}}{1+z^2}dz=2\pi Res(f,i)=\frac{e^{-a}}{2i}$, where $\gamma_R$ denotes the upper semi-circle centered at $O$ with radius $R$.
As $R$—>$+∞$,
$\int_{-R}^{R}\frac{e^{iax}}{1+x^2}dx$ —> $\int_{-∞}^{+∞}\frac{e^{iax}}{1+x^2}dx$
Now, I am stuck on how to prove $\int_{\gamma_R}\frac{e^{iaz}}{1+z^2}dz$ goes to $0$ as $R$ goes to infinity.
Anyone know how to do it? Many thanks.