Let $X$ and $Y$ be i.i.d. Expo(λ), and $T = \log(X/Y )$. Find the CDF and PDF of $T$.
$P(T \le t)=P \left(\log(\frac XY) \le t\right)=P(X \le 10^tY)$
\begin{align} P(T \le t) & = P(X \le 10^tY)=P(X \le 10^tY \mid Y=y)P(Y=y) \\[10pt] & =(1-e^{λ10^ty})λe^{-λy} = λe^{-λy}-λe^{-λy(10^{ty}+1)} \end{align}
$$f(t)=-λ^2e^{-λy}-λ^2(10^{ty}+1)e^{-λy(10^{ty}+1)}; \quad y \ge 0$$
Is it wrong?