Here is an elementary real method.
Let
$$I(a) = \int^\pi_0 \ln (1 - 2a \cos x + a^2) \, dx, \quad a \in \mathbb{R}.$$
To find the value of $I(a)$ a number of properties for the function $I(a)$ will be estiblished.
Firstly, note that $I(0) = 0$. Also $I(a)$ is even since
\begin{align*}
I(-a) &= \int^\pi_0 \ln (1 + 2a \cos x + a^2) \, dx\\
x \mapsto \pi - x \atop &= \int^\pi_0 \ln (1 + 2a \cos (\pi - x) + a^2) \, dx\\
&= \int^\pi_0 \ln (1 - 2a \cos x + a^2) \, dx\\
&= I(a).
\end{align*}
Next, observe that provided $a \neq 0$
\begin{align*}
I \left (\frac{1}{a} \right ) &= \int^\pi_0 \ln \left (1 - \frac{2}{a} \cos x + \frac{1}{a^2} \right ) \, dx\\
&= \int^\pi_0 \ln (1 - 2a \cos x + a^2) \, dx - 2 \ln |a| \int^\pi_0 dx,\\
&= I(a) - 2 \pi \ln |a|,
\end{align*}
or
$$I(a) = 2 \pi \ln |a| + I \left (\frac{1}{a} \right ). \tag1$$
Now consider the sum $I(a) + I(-a)$.
\begin{align*}
I(a) + I(-a) &= \int^\pi_0 \ln (1 - 2a \cos x + a^2) \, dx + \int^\pi_0 \ln (1 + 2a \cos x + a^2) \, dx\\
&= \int^\pi_0 \ln [1 + 2a^2 (1 - 2 \cos^2 x) + a^4] \, dx\\
&= \int^\pi_0 \ln (1 + 2a^2 \cos 2x + a^4) \, dx\\
x \mapsto x/2 \atop &= \frac{1}{2} \int^{2\pi}_0 \ln (1 + 2a^2 \cos x + a^4) \, dx\\
&= \frac{1}{2} \int^\pi_0 \ln (1 + 2a^2 \cos x + a^4) \, dx + \frac{1}{2} \int^{2\pi}_\pi \ln (1 + 2a^2 \cos x + a^4) \, dx\\
x \mapsto 2\pi - x \atop &= \frac{1}{2} \int^\pi_0 \ln (1 + 2a^2 \cos x + a^4) \, dx + \frac{1}{2} \int^\pi_0 \ln (1 + 2a^2 \cos (2\pi - x) + a^4) \, dx\\
&= \int^\pi_0 \ln (1 + 2a^2 \cos x + a^4) \, dx\\
&= \int^\pi_0 \ln (1 - 2(-a^2) \cos x + (-a^2)^2) \, dx\\
&= I(-a^2).
\end{align*}
And since $I$ is even this reduces to
$$I(a) + I(a) = I(a^2),$$
or
$$I(a) = \frac{1}{2} I(a^2). \tag2$$
So by induction on $n \in \mathbb{N}$ we have
$$I(a) = \frac{1}{2} I(a^2) = \frac{1}{2^2} I(a^4) = \frac{1}{2^3} I(a^8) = \cdots = \frac{1}{2^n} I(a^{2^n}). \tag3$$
We can now find the value of $I(a)$ for various values of $a$.
When $a = 1$, from (2) we have $I(1) = \frac{1}{2} I(1)$ or $I(1) = 0$. Also, since $I(a) = I(-a)$, then $I(1) = I(-1) = 0$. Thus $I(\pm 1) = 0$.
Next, as $n \to \infty$, if $|a| < 1$, $a^{2^n} \to 0$. Thus from (3) we see that $I(a) \to 0$ as $n \to \infty$ for $|a| < 1$.
Finally, since $I(a) = 0$ for $|a| < 1$, then $I \left (\frac{1}{a} \right ) = 0$ for $|a| > 1$. So from (1) we have $I(a) = 2 \pi \ln |a|$.
So to summarise
$$I (a) = \begin{cases}
0, & |a| \leqslant 1\\[2ex]
2 \pi \ln |a|, & |a| > 1.
\end{cases}
$$